Phân tích nhân tố khẳng định (CFA): sử dụng thích hợp khi nhà nghiên cứu có sẵn một số kiến thức về cấu trúc biến tiềm ẩn cơ sở. Trong đó mối quan hệ hay giả thuyết (có được từ lý thuyết hay thực nghiệm) giữa biến quan sát và nhân tố cơ sở thì được các nhà nghiên cứu mặc nhiên thừa nhận trước khi tiến hành kiểm định thống kê.Như vậy CFA là bước tiếp theo của EFA nhằm kiểm định xem có một mô hình lý thuyết có trước làm nền tảng cho một tập hợp các quan sát không. CFA cũng là một dạng của SEM. Khi xây dựng CFA, các biến quan sát cũng là các biến chỉ báo trong mô hình đo lường, bởi vì chúng cùng ” tải” lên khái niệm lý thuyết cơ sở.
Phương pháp phân tích nhân tố khẳng định CFA chấp nhận các giả thuyết của các nhà nghiên cứu, được xác định căn cứ theo quan hệ giữa mỗi biến và một hay nhiều hơn một nhân tố. Sau đây là một mô hình SEM sử dụng kỹ thuật phân tích CFA:
Hình : Mô hình đo lường và mô hình cấu trúc của SEM
X1 = λ11 ξ1 + δ1
X2 = λ22 ξ2 + δ2
X3 = λ31 ξ1 + λ32 ξ2 + δ3,
(ξ i là các nhân tố chung, Xi là các nhân tố xác định)
Trong đó: λ là các hệ số tải, các nhân tố chung ξ i có thể có tương quan với nhau, các nhân tố xác định Xi cũng có thể tương quan với nhau. Phương sai của một nhân tố xác định là duy nhất.
Phương trình biểu diễn mô hình một cách tổng quát dạng ma trận của x như sau:
x = Λx ξ +δ
Cov(x, ξ) = Σ = E(xx’) = E [(Λx ξ +δ)(Λx ξ +δ)’] = E[(Λx ξ +δ)(Λ’x ξ ‘+δ’)]
= Λx E(ξξ’)Λx’ + ΛxE(ξδ’)Λx’ + E(δ’δ’)
Đặt : Σ = E(xx’); Φ = E(ξξ’); Θ = E(δδ’)
Với x’; Λx’; ξ ‘; δ’ lần lượt là ma trận chuyển vị của ma trận x; Λx; ξ ;δ.
Cuối cùng phương trình Covariance được viết gọn như sau:
Σx = Λx Φξ Λ’x + Θx
Tương tự đối với phương trình dạng ma trận của y và ma trận Covariance:
y = Λyη + ε
Σy = Λy Φη Λ’y + Θy
( Theo Phạm Đức Kỳ)
( Theo Phạm Đức Kỳ)
Không có nhận xét nào:
Đăng nhận xét